】 【打 印】 
【 第1页 第2页 】 
谨防金融大模型应用风险
http://www.CRNTT.com   2024-11-20 13:40:02


  中评社北京11月20日电/据经济日报报导,当前,人工智能大模型正在逐步影响各行各业,金融领域也不例外。

  根据英伟达发布的针对近400家金融机构的调研结果,43%的金融机构已开始使用大模型。麦肯锡2024年的调研数据显示,金融行业从业者反馈“在工作中常规使用大模型”“在生活中常规使用大模型”和“在工作和生活中均常规使用大模型”的数量占比已达到48%。据麦肯锡测算,大模型有望给全球金融行业带来每年2500亿美元至4100亿美元的增量价值。这些数据无疑为大模型在金融领域的进一步应用描绘了光明的前景。

  然而,随着大模型的广泛应用,一些新风险也逐渐显露出来,一旦应对不当,可能对金融行业构成严峻的挑战。

  首先,大模型的进一步推广可能会加剧金融行业的“两极分化”。由于技术投入、业务禀赋和人力资源等方面的差异,一些头部金融机构在大模型展现的能力上开始显现出明显优势。相比之下,中小机构受限于资金预算约束、相对有限的业务规模和专业人才资源,与头部机构之间的差距将被逐渐拉大,呈现出“强者愈强,弱者愈弱”的趋势。从行业整体来看,金融行业原本就具有信息数据密集、人才智力密集等特点,大模型的推广应用可能导致金融行业资源进一步集中。

  其次,目前大模型本身存在的缺陷也可能给金融系统带来安全风险。大模型仍存在专业能力有限、生成结果不可控、算法可解释性较差等问题,当前在合规性和适当性等方面仍缺乏保障。一旦训练数据不完备或质量较差,可能会生成低质量的错误内容,导致结果不可用,甚至误导金融机构和金融消费者的判断和决策。在模型可解释性方面,大模型的复杂程度较高,使得内容生成的结果和过程难以被清晰地解释,产生“黑箱”问题,导致金融机构难以在事前、事中、事后进行有效的风险溯源和管理。此外,考虑到大模型基于海量数据进行训练,若底层数据本身存在偏见和歧视,可能会导致大模型内容输出、决策生成方面存在偏见,进而导致金融服务存在歧视性定价等风险。 


【 第1页 第2页 】 


扫描二维码访问中评网移动版 】 【打 印扫描二维码访问中评社微信  

 相关新闻: