】 【打 印】 
【 第1页 第2页 】 
把握新一代信息技术的聚焦点
http://www.CRNTT.com   2019-03-03 09:15:55


 
  物联网主要解决人对物理世界的感知问题,而要解决对物理对象的操控问题则必须进一步发展信息物理系统(CPS)。信息物理系统是一个综合计算、网络和物理环境的多维复杂系统,它通过3C(Computer、Communication、Control)技术的有机融合与深度协作,实现对大型工程系统的实时感知、动态控制和信息服务。通过人机交互接口,信息物理系统实现计算进程与物理进程的交互,利用网络化空间以远程、可靠、实时、安全、协作的方式操控一个物理实体。从本质上说,信息物理系统是一个具有控制属性的网络。

  不同于提供信息交互与应用的公用基础设施,信息物理系统发展的聚焦点在于研发深度融合感知、计算、通信和控制能力的网络化物理设备系统。从产业角度看,信息物理系统的涵盖范围小到智能家庭网络、大到工业控制系统乃至智能交通系统等国家级甚至世界级的应用。更为重要的是,这种涵盖并不仅仅是将现有的设备简单地连在一起,而是会催生出众多具有计算、通信、控制、协同和自治性能的设备,下一代工业将建立在信息物理系统之上。随着信息物理系统技术的发展和普及,使用计算机和网络实现功能扩展的物理设备将无处不在,并推动工业产品和技术的升级换代,极大地提高汽车、航空航天、国防、工业自动化、健康医疗设备、重大基础设施等主要工业领域的竞争力。信息物理系统不仅会催生出新的工业,甚至会重塑现有产业布局。

  智能化:从专家系统到元学习

  文章分析,智能化反映信息产品的质量属性。我们说一个信息产品是智能的,通常是指这个产品能完成有智慧的人才能完成的事情,或者已经达到人类才能达到的水平。智能一般包括感知能力、记忆与思维能力、学习与自适应能力、行为决策能力等。所以,智能化通常也可定义为:使对象具备灵敏准确的感知功能、正确的思维与判断功能、自适应的学习功能、行之有效的执行功能等。

  智能化是信息技术发展的永恒追求,实现这一追求的主要途径是发展人工智能技术。人工智能技术诞生60多年来,虽历经三起两落,但还是取得了巨大成就。1959—1976年是基于人工表示知识和符号处理的阶段,产生了在一些领域具有重要应用价值的专家系统;1976—2007年是基于统计学习和知识自表示的阶段,产生了各种各样的神经网络系统;近几年开始的基于环境自适应、自博弈、自进化、自学习的研究,正在形成一个人工智能发展的新阶段——元学习或方法论学习阶段,这构成新一代人工智能。新一代人工智能主要包括大数据智能、群体智能、跨媒体智能、人机混合增强智能和类脑智能等。

  深度学习是新一代人工智能技术的卓越代表。由于在人脸识别、机器翻译、棋类竞赛等众多领域超越人类的表现,深度学习在今天几乎已成为人工智能的代名词。然而,深度学习拓扑设计难、效果预期难、机理解释难是重大挑战,还没有一套坚实的数学理论来支撑解决这三大难题。解决这些难题是深度学习未来研究的主要关注点。此外,深度学习是典型的大数据智能,它的可应用性是以存在大量训练样本为基础的。小样本学习将是深度学习的发展趋势。

  元学习有望成为人工智能发展的下一个突破口。学会学习、学会教学、学会优化、学会搜索、学会推理等新近发展的元学习方法以及“AlphaGo Zero”在围棋方面的出色表现,展现了这类新技术的诱人前景。然而,元学习研究还仅仅是开始,其发展还面临一系列挑战。

  新一代人工智能的热潮已经来临,可以预见的发展趋势是以大数据为基础、以模型与算法创新为核心、以强大的计算能力为支撑。新一代人工智能技术的突破依赖其他各类信息技术的综合发展,也依赖脑科学与认知科学的实质性进步与发展。

  


 【 第1页 第2页 】


扫描二维码访问中评网移动版 】 【打 印扫描二维码访问中评社微信