有望减少误诊漏诊提供普惠医疗服务
当前,医检服务正日益趋向专业化、精准化、个性化。以广东省新一代人工智能开放创新平台的承建单位金域医学为例,其已在医检生成式人工智能领域有所布局,目前已建立起标准报告语言规范及高质量专病数据库,并正利用预训练模型在医学文本实体抽取、病理报告结构化等领域开展探索。
受访专家们一致认为,未来将大语言模型应用于医学可能会成为一种趋势。在分诊问诊等临床咨询阶段,利用模型与患者进行交互,收集到完整、准确的信息并形成初步意见,再将其交给专业医生进行最终判断,这在一定程度上可以减少因为信息收集不充分、患者主诉不明确等问题带来的误诊和漏诊。这个方案不管是从准确率还是从效率上来看,都具备一定的可行性。
“许多最前沿的医疗知识分散在少数人手里,而大语言模型却能够融合顶尖知识,提供更加普惠的医疗知识服务。”左手医生创始人兼CEO张超说。
上海长海医院实验诊断科主任、博士生导师刘善荣也表示,未来若能搜集到大型三甲医院的医生对于某些疾病的认知并将其导入大语言模型进行整合、学习,一些医疗资源不充足的地区也有可能享受到高质量的医疗服务。
对齐真实医疗场景需技术伦理双管齐下
大语言模型或许能提升医检行业效率,但在面对真实的寻医问诊场景时,目前的大语言模型仍有其局限性,这主要体现在准确性、一致性和及时性上。 |